3.3.59 \(\int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx\) [259]

3.3.59.1 Optimal result
3.3.59.2 Mathematica [A] (verified)
3.3.59.3 Rubi [A] (verified)
3.3.59.4 Maple [B] (warning: unable to verify)
3.3.59.5 Fricas [B] (verification not implemented)
3.3.59.6 Sympy [F(-1)]
3.3.59.7 Maxima [B] (verification not implemented)
3.3.59.8 Giac [F]
3.3.59.9 Mupad [F(-1)]

3.3.59.1 Optimal result

Integrand size = 25, antiderivative size = 174 \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {2 \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{a^{5/2} d}-\frac {43 \text {arctanh}\left (\frac {\sqrt {a} \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{16 \sqrt {2} a^{5/2} d}-\frac {\sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)}{4 d (a+a \sec (c+d x))^{5/2}}-\frac {11 \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)}{16 a d (a+a \sec (c+d x))^{3/2}} \]

output
2*arcsinh(a^(1/2)*tan(d*x+c)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d-1/4*sec(d*x 
+c)^(5/2)*sin(d*x+c)/d/(a+a*sec(d*x+c))^(5/2)-11/16*sec(d*x+c)^(3/2)*sin(d 
*x+c)/a/d/(a+a*sec(d*x+c))^(3/2)-43/32*arctanh(1/2*sin(d*x+c)*a^(1/2)*sec( 
d*x+c)^(1/2)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)
 
3.3.59.2 Mathematica [A] (verified)

Time = 0.71 (sec) , antiderivative size = 308, normalized size of antiderivative = 1.77 \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\frac {-22 \sqrt {1-\sec (c+d x)} \sec ^{\frac {3}{2}}(c+d x) \sin (c+d x)-30 \sqrt {1-\sec (c+d x)} \sec ^{\frac {5}{2}}(c+d x) \sin (c+d x)+43 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \tan (c+d x)+86 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec (c+d x) \tan (c+d x)+43 \sqrt {2} \arctan \left (\frac {\sqrt {2} \sqrt {\sec (c+d x)}}{\sqrt {1-\sec (c+d x)}}\right ) \sec ^2(c+d x) \tan (c+d x)-22 \arcsin \left (\sqrt {1-\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)-86 \arcsin \left (\sqrt {\sec (c+d x)}\right ) (1+\sec (c+d x))^2 \tan (c+d x)}{32 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{5/2}} \]

input
Integrate[Sec[c + d*x]^(7/2)/(a + a*Sec[c + d*x])^(5/2),x]
 
output
(-22*Sqrt[1 - Sec[c + d*x]]*Sec[c + d*x]^(3/2)*Sin[c + d*x] - 30*Sqrt[1 - 
Sec[c + d*x]]*Sec[c + d*x]^(5/2)*Sin[c + d*x] + 43*Sqrt[2]*ArcTan[(Sqrt[2] 
*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Tan[c + d*x] + 86*Sqrt[2]*Arc 
Tan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + d*x]]]*Sec[c + d*x]*Tan[ 
c + d*x] + 43*Sqrt[2]*ArcTan[(Sqrt[2]*Sqrt[Sec[c + d*x]])/Sqrt[1 - Sec[c + 
 d*x]]]*Sec[c + d*x]^2*Tan[c + d*x] - 22*ArcSin[Sqrt[1 - Sec[c + d*x]]]*(1 
 + Sec[c + d*x])^2*Tan[c + d*x] - 86*ArcSin[Sqrt[Sec[c + d*x]]]*(1 + Sec[c 
 + d*x])^2*Tan[c + d*x])/(32*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x] 
))^(5/2))
 
3.3.59.3 Rubi [A] (verified)

Time = 1.02 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.07, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4303, 27, 3042, 4507, 27, 3042, 4511, 3042, 4288, 222, 4295, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a \sec (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{7/2}}{\left (a \csc \left (c+d x+\frac {\pi }{2}\right )+a\right )^{5/2}}dx\)

\(\Big \downarrow \) 4303

\(\displaystyle -\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) (3 a-8 a \sec (c+d x))}{2 (\sec (c+d x) a+a)^{3/2}}dx}{4 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\sec ^{\frac {3}{2}}(c+d x) (3 a-8 a \sec (c+d x))}{(\sec (c+d x) a+a)^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {\csc \left (c+d x+\frac {\pi }{2}\right )^{3/2} \left (3 a-8 a \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\left (\csc \left (c+d x+\frac {\pi }{2}\right ) a+a\right )^{3/2}}dx}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4507

\(\displaystyle -\frac {\frac {\int \frac {\sqrt {\sec (c+d x)} \left (11 a^2-32 a^2 \sec (c+d x)\right )}{2 \sqrt {\sec (c+d x) a+a}}dx}{2 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\sqrt {\sec (c+d x)} \left (11 a^2-32 a^2 \sec (c+d x)\right )}{\sqrt {\sec (c+d x) a+a}}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \left (11 a^2-32 a^2 \csc \left (c+d x+\frac {\pi }{2}\right )\right )}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4511

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {\sqrt {\sec (c+d x)}}{\sqrt {\sec (c+d x) a+a}}dx-32 a \int \sqrt {\sec (c+d x)} \sqrt {\sec (c+d x) a+a}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-32 a \int \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )} \sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}dx}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4288

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx+\frac {64 a \int \frac {1}{\sqrt {\frac {a \tan ^2(c+d x)}{\sec (c+d x) a+a}+1}}d\left (-\frac {a \tan (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 222

\(\displaystyle -\frac {\frac {43 a^2 \int \frac {\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right )}}{\sqrt {\csc \left (c+d x+\frac {\pi }{2}\right ) a+a}}dx-\frac {64 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 4295

\(\displaystyle -\frac {\frac {-\frac {86 a^2 \int \frac {1}{2 a-\frac {a^2 \sin (c+d x) \tan (c+d x)}{\sec (c+d x) a+a}}d\left (-\frac {a \sqrt {\sec (c+d x)} \sin (c+d x)}{\sqrt {\sec (c+d x) a+a}}\right )}{d}-\frac {64 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {\frac {43 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \sin (c+d x) \sqrt {\sec (c+d x)}}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{d}-\frac {64 a^{3/2} \text {arcsinh}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {a \sec (c+d x)+a}}\right )}{d}}{4 a^2}+\frac {11 a \sin (c+d x) \sec ^{\frac {3}{2}}(c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}}}{8 a^2}-\frac {\sin (c+d x) \sec ^{\frac {5}{2}}(c+d x)}{4 d (a \sec (c+d x)+a)^{5/2}}\)

input
Int[Sec[c + d*x]^(7/2)/(a + a*Sec[c + d*x])^(5/2),x]
 
output
-1/4*(Sec[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Sec[c + d*x])^(5/2)) - (( 
(-64*a^(3/2)*ArcSinh[(Sqrt[a]*Tan[c + d*x])/Sqrt[a + a*Sec[c + d*x]]])/d + 
 (43*Sqrt[2]*a^(3/2)*ArcTanh[(Sqrt[a]*Sqrt[Sec[c + d*x]]*Sin[c + d*x])/(Sq 
rt[2]*Sqrt[a + a*Sec[c + d*x]])])/d)/(4*a^2) + (11*a*Sec[c + d*x]^(3/2)*Si 
n[c + d*x])/(2*d*(a + a*Sec[c + d*x])^(3/2)))/(8*a^2)
 

3.3.59.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 222
Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Simp[ArcSinh[Rt[b, 2]*(x/Sqrt 
[a])]/Rt[b, 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4288
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]*Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*(a/(b*f))*Sqrt[a*(d/b)]   Subst[Int[1/Sqrt[1 
+ x^2/a], x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a 
, b, d, e, f}, x] && EqQ[a^2 - b^2, 0] && GtQ[a*(d/b), 0]
 

rule 4295
Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) 
+ (a_)], x_Symbol] :> Simp[-2*b*(d/(a*f))   Subst[Int[1/(2*b - d*x^2), x], 
x, b*(Cot[e + f*x]/(Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]))], x] /; 
 FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 0]
 

rule 4303
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_), x_Symbol] :> Simp[(-d^2)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d 
*Csc[e + f*x])^(n - 2)/(f*(2*m + 1))), x] + Simp[d^2/(a*b*(2*m + 1))   Int[ 
(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^(n - 2)*(b*(n - 2) + a*(m - n 
 + 2)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^2, 
0] && LtQ[m, -1] && GtQ[n, 2] && (IntegersQ[2*m, 2*n] || IntegerQ[m])
 

rule 4507
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[d*(A*b 
- a*B)*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*((d*Csc[e + f*x])^(n - 1)/(a*f*( 
2*m + 1))), x] - Simp[1/(a*b*(2*m + 1))   Int[(a + b*Csc[e + f*x])^(m + 1)* 
(d*Csc[e + f*x])^(n - 1)*Simp[A*(a*d*(n - 1)) - B*(b*d*(n - 1)) - d*(a*B*(m 
 - n + 1) + A*b*(m + n))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, 
A, B}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)] && G 
tQ[n, 0]
 

rule 4511
Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + ( 
a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_)), x_Symbol] :> Simp[(A*b - 
a*B)/b   Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^n, x], x] + Simp[B/b 
 Int[(a + b*Csc[e + f*x])^(m + 1)*(d*Csc[e + f*x])^n, x], x] /; FreeQ[{a, b 
, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b^2, 0]
 
3.3.59.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(409\) vs. \(2(143)=286\).

Time = 1.63 (sec) , antiderivative size = 410, normalized size of antiderivative = 2.36

method result size
default \(-\frac {\left (-\frac {\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\right )^{\frac {7}{2}} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1\right )^{4} \sqrt {-\frac {2 a}{\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\, \left (2 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (1-\cos \left (d x +c \right )\right )^{3} \csc \left (d x +c \right )^{3}+16 \sqrt {2}\, \arctan \left (\frac {\left (\csc \left (d x +c \right )-\cot \left (d x +c \right )+1\right ) \sqrt {2}}{2 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )+16 \sqrt {2}\, \arctan \left (\frac {\left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )-1\right ) \sqrt {2}}{2 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )+13 \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}\, \left (-\cot \left (d x +c \right )+\csc \left (d x +c \right )\right )-43 \arctan \left (\frac {-\cot \left (d x +c \right )+\csc \left (d x +c \right )}{\sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\right )\right )}{32 d \,a^{3} \left (\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}+1\right )^{3} \sqrt {-\left (1-\cos \left (d x +c \right )\right )^{2} \csc \left (d x +c \right )^{2}-1}}\) \(410\)

input
int(sec(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(5/2),x,method=_RETURNVERBOSE)
 
output
-1/32/d/a^3*(-((1-cos(d*x+c))^2*csc(d*x+c)^2+1)/((1-cos(d*x+c))^2*csc(d*x+ 
c)^2-1))^(7/2)*((1-cos(d*x+c))^2*csc(d*x+c)^2-1)^4*(-2*a/((1-cos(d*x+c))^2 
*csc(d*x+c)^2-1))^(1/2)*(2*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(1-cos 
(d*x+c))^3*csc(d*x+c)^3+16*2^(1/2)*arctan(1/2*(csc(d*x+c)-cot(d*x+c)+1)*2^ 
(1/2)/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))+16*2^(1/2)*arctan(1/2*(-co 
t(d*x+c)+csc(d*x+c)-1)*2^(1/2)/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2))+1 
3*(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c))-43*arc 
tan(1/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/2)*(-cot(d*x+c)+csc(d*x+c))))/ 
((1-cos(d*x+c))^2*csc(d*x+c)^2+1)^3/(-(1-cos(d*x+c))^2*csc(d*x+c)^2-1)^(1/ 
2)
 
3.3.59.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 297 vs. \(2 (143) = 286\).

Time = 0.34 (sec) , antiderivative size = 665, normalized size of antiderivative = 3.82 \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\left [\frac {43 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (-\frac {a \cos \left (d x + c\right )^{2} + 2 \, \sqrt {2} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 2 \, a \cos \left (d x + c\right ) - 3 \, a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 32 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} - \frac {4 \, {\left (\cos \left (d x + c\right )^{2} - 2 \, \cos \left (d x + c\right )\right )} \sqrt {a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}} + 8 \, a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2}}\right ) - \frac {4 \, {\left (11 \, \cos \left (d x + c\right )^{2} + 15 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{64 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}, \frac {43 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {\sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )}}{a \sin \left (d x + c\right )}\right ) + 32 \, {\left (\cos \left (d x + c\right )^{3} + 3 \, \cos \left (d x + c\right )^{2} + 3 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \arctan \left (\frac {2 \, \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{a \cos \left (d x + c\right )^{2} - a \cos \left (d x + c\right ) - 2 \, a}\right ) - \frac {2 \, {\left (11 \, \cos \left (d x + c\right )^{2} + 15 \, \cos \left (d x + c\right )\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{\sqrt {\cos \left (d x + c\right )}}}{32 \, {\left (a^{3} d \cos \left (d x + c\right )^{3} + 3 \, a^{3} d \cos \left (d x + c\right )^{2} + 3 \, a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )}}\right ] \]

input
integrate(sec(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")
 
output
[1/64*(43*sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1) 
*sqrt(a)*log(-(a*cos(d*x + c)^2 + 2*sqrt(2)*sqrt(a)*sqrt((a*cos(d*x + c) + 
 a)/cos(d*x + c))*sqrt(cos(d*x + c))*sin(d*x + c) - 2*a*cos(d*x + c) - 3*a 
)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 32*(cos(d*x + c)^3 + 3*cos(d*x 
+ c)^2 + 3*cos(d*x + c) + 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + 
 c)^2 - 4*(cos(d*x + c)^2 - 2*cos(d*x + c))*sqrt(a)*sqrt((a*cos(d*x + c) + 
 a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)) + 8*a)/(cos(d*x + c)^3 + 
 cos(d*x + c)^2)) - 4*(11*cos(d*x + c)^2 + 15*cos(d*x + c))*sqrt((a*cos(d* 
x + c) + a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x 
+ c)^3 + 3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d), 1/32*(43* 
sqrt(2)*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos(d*x + c) + 1)*sqrt(-a)* 
arctan(sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d 
*x + c))/(a*sin(d*x + c))) + 32*(cos(d*x + c)^3 + 3*cos(d*x + c)^2 + 3*cos 
(d*x + c) + 1)*sqrt(-a)*arctan(2*sqrt(-a)*sqrt((a*cos(d*x + c) + a)/cos(d* 
x + c))*sqrt(cos(d*x + c))*sin(d*x + c)/(a*cos(d*x + c)^2 - a*cos(d*x + c) 
 - 2*a)) - 2*(11*cos(d*x + c)^2 + 15*cos(d*x + c))*sqrt((a*cos(d*x + c) + 
a)/cos(d*x + c))*sin(d*x + c)/sqrt(cos(d*x + c)))/(a^3*d*cos(d*x + c)^3 + 
3*a^3*d*cos(d*x + c)^2 + 3*a^3*d*cos(d*x + c) + a^3*d)]
 
3.3.59.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(sec(d*x+c)**(7/2)/(a+a*sec(d*x+c))**(5/2),x)
 
output
Timed out
 
3.3.59.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4988 vs. \(2 (143) = 286\).

Time = 0.60 (sec) , antiderivative size = 4988, normalized size of antiderivative = 28.67 \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\text {Too large to display} \]

input
integrate(sec(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")
 
output
1/32*(44*(sin(4*d*x + 4*c) + 6*sin(2*d*x + 2*c) + 4*sin(3/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c))) + 4*sin(1/2*arctan2(sin(2*d*x + 2*c), cos(2 
*d*x + 2*c))))*cos(7/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 16*( 
19*sin(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 19*sin(3/4*arcta 
n2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) - 11*sin(1/4*arctan2(sin(2*d*x + 2 
*c), cos(2*d*x + 2*c))))*cos(3/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c 
))) + 76*(sin(4*d*x + 4*c) + 6*sin(2*d*x + 2*c) + 4*sin(1/2*arctan2(sin(2* 
d*x + 2*c), cos(2*d*x + 2*c))))*cos(5/4*arctan2(sin(2*d*x + 2*c), cos(2*d* 
x + 2*c))) - 76*(sin(4*d*x + 4*c) + 6*sin(2*d*x + 2*c) + 4*sin(1/2*arctan2 
(sin(2*d*x + 2*c), cos(2*d*x + 2*c))))*cos(3/4*arctan2(sin(2*d*x + 2*c), c 
os(2*d*x + 2*c))) - 44*(sin(4*d*x + 4*c) + 6*sin(2*d*x + 2*c))*cos(1/4*arc 
tan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c))) + 16*(sqrt(2)*cos(4*d*x + 4*c)^2 
 + 36*sqrt(2)*cos(2*d*x + 2*c)^2 + 16*sqrt(2)*cos(3/2*arctan2(sin(2*d*x + 
2*c), cos(2*d*x + 2*c)))^2 + 16*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), 
cos(2*d*x + 2*c)))^2 + sqrt(2)*sin(4*d*x + 4*c)^2 + 12*sqrt(2)*sin(4*d*x + 
 4*c)*sin(2*d*x + 2*c) + 36*sqrt(2)*sin(2*d*x + 2*c)^2 + 16*sqrt(2)*sin(3/ 
2*arctan2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 16*sqrt(2)*sin(1/2*arct 
an2(sin(2*d*x + 2*c), cos(2*d*x + 2*c)))^2 + 2*(6*sqrt(2)*cos(2*d*x + 2*c) 
 + sqrt(2))*cos(4*d*x + 4*c) + 8*(sqrt(2)*cos(4*d*x + 4*c) + 6*sqrt(2)*cos 
(2*d*x + 2*c) + 4*sqrt(2)*cos(1/2*arctan2(sin(2*d*x + 2*c), cos(2*d*x +...
 
3.3.59.8 Giac [F]

\[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int { \frac {\sec \left (d x + c\right )^{\frac {7}{2}}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(sec(d*x+c)^(7/2)/(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")
 
output
integrate(sec(d*x + c)^(7/2)/(a*sec(d*x + c) + a)^(5/2), x)
 
3.3.59.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\sec ^{\frac {7}{2}}(c+d x)}{(a+a \sec (c+d x))^{5/2}} \, dx=\int \frac {{\left (\frac {1}{\cos \left (c+d\,x\right )}\right )}^{7/2}}{{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2}} \,d x \]

input
int((1/cos(c + d*x))^(7/2)/(a + a/cos(c + d*x))^(5/2),x)
 
output
int((1/cos(c + d*x))^(7/2)/(a + a/cos(c + d*x))^(5/2), x)